斯坦福、伯克利、杜克大学、哥大等 深度学习课程+书籍

1
回复
1007
查看
[复制链接]
  • TA的每日心情
    擦汗
    2023-5-6 02:41
  • 签到天数: 570 天

    [LV.9]以坛为家II

    2936

    主题

    3539

    帖子

    1万

    积分

    管理员

    Rank: 9Rank: 9Rank: 9

    积分
    18422
    发表于 2018-2-17 15:00:00 | 显示全部楼层 |阅读模式

    登录后查看本帖详细内容!

    您需要 登录 才可以下载或查看,没有帐号?立即注册

    x
    深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

    【课程内容】

    Audio Signal Processing for Music Applications

    • Introduction
    • Discrete Fourier transform
    • Fourier theorems
    • Short-time Fourier transform
    • Sinusoidal model
    • Harmonic model
    • Sinusoidal plus residual model
    • Sound transformations
    • Sound and music description
    • Concluding topics

    Computer Vision 计算机视觉

    • Overview
    • Fundamentals of image formation
    • Rigid body motion
    • Orthogonal transformations
    • Orthogonal transformations - Orthogonal Matrices
    • Orthogonal matrices - Rotations and reflections
    • Parametrizing Rotations in 3D
    • Euclidean, Affine and Projective Transformations
    • Dynamic Perspective
    • Binocular Stereo
    • Radiometry
    • Image processing
    • Orientation histograms
    • Handwritten digit recognition - Introduction
    • Support Vector Machines
    • Transformation Invariance and Histograms
    • Digit recognition using SVMs
    • Random forests
    • Detection of 3D objects
    • Concluding Remarks

    Image and video processing

    • What is image and video processing
    • Course logistics
    • Images are everywhere
    • Human visual system
    • Image formation - Sampling  Quantization
    • Simple image operations
    • The why and how of compression
    • Huffman coding
    • JPEGs 8x8 blocks
    • The Discrete Cosine Transform (DCT)
    • Quantization
    • JPEG_LS and MPEG
    • Bonus Run-length compression
    • Introduction to image enhancement
    • Demo - Enhancement Histogram modification
    • Histogram equalization
    • Histogram matching
    • Introduction to local neighborhood operations
    • Mathematical properties of averaging
    • Non-Local means
    • IPOL Demo - Non-Local means
    • Median filter
    • Demo - Median filter
    • Derivatives Laplacian  Unsharp masking
    • Demo - Unsharp masking
    • Gradients of scalar and vector images
    • Concluding remarks
    • What is image restoration
    • Noise types
    • Demo - Types of noise
    • Noise and histograms
    • Estimating noise
    • Degradation Function
    • Wiener filtering
    • Demo - Wiener and Box filters
    • Concluding remarks
    • Introduction to Segmentation
    • On Edges and Regions
    • Hough Transform with Matlab Demo
    • Line Segment Detector with Demo
    • Otsus Segmentation with Demo
    • Congratulations
    • Interactive Image Segmentation
    • Graph Cuts and Ms Office
    • Mumford-Shah
    • Active Contours - Introduction with ipol.im and Photoshop Demos
    • Behind the Scenes of Adobes Roto Brush
    • Introduction to PDEs in Image and Video Processing
    • Planar Differential Geometry
    • Surface Differential Geometry
    • Curve Evolution
    • Level Sets and Curve Evolution
    • Calculus of Variations
    • Anisotropic Diffusion
    • Active Contours
    • Bonus Cool Contrast Enhancement via PDEs
    • Introduction to Image Inpainting
    • Inpainting in Nature
    • PDEs and Inpainting
    • Inpainting via Calculus of Variations
    • Smart Cut and Paste
    • Demo - Photoshop Inpainting Healing Brush
    • Video Inpainting and Conclusions
    • Introduction to Sparse Modeling
    • Sparse Modeling - Implementation
    • Dictionary Learning
    • Sparse Modeling Image Processing Examples
    • A Note on Compressed Sensing
    • GMM and Structured Sparsity
    • Bonus Sparse Modeling and Classification - Activity Recognition
    • Introduction to Medical Imaging
    • Image Processing and HIV
    • Brain Imaging Diffusion Imaging Deep Brain Stimulation

    Natural Language Processing Collins

    • Introduction to Natural Language Processing
    • The Language Modeling Problem
    • Parameter Estimation in Language Models
    • Summary
    • Tagging Problems and Hidden Markov Models
    • Parsing and Context-Free Grammars
    • Probabilistic Context-Free Grammars
    • Weaknesses of PCFGs
    • Lexicalized PCFGs
    • Introduction to Machine Translation
    • The IBM Translation Models
    • Phrase-based Translation Models
    • Decoding of Phrase-based Translation Models
    • Log-linear Models
    • Log-linear Models for Tagging
    • Log-Linear Models for History-based Parsing
    • Unsupervised Learning- Brown Clustering
    • Global Linear Models
    • GLMs for Tagging
    • GLMs for Dependency Parsing

    Neural Networks for Machine Learning

    • hinton-ml(67课)
    • neuralnets(78课)

    Probabilistic Graphical Models

    • Introduction and Overview
    • Bayesian Network Fundamentals
    • Template Models
    • ML-class Octave Tutorial
    • Structured CPDs
    • Markov Network Fundamentals
    • Representation Wrapup- Knowledge Engineering
    • Inference-Variable Elimination
    • Inference-Belief Propagation
    • Inference-MAP Estimation
    • Inference-Sampling Methods
    • Inference-Temporal Models and Wrap-up
    • Decision Theory
    • ML-class Revision
    • Learning-Overview
    • Learning-Parameter Estimation in BNs
    • Learning-Parameter Estimation in MNs
    • Structure Learning
    • Learning With Incomplete Data
    • Learning-Wrapup
    • Summary

    《深度学习在互联网上的应用》

    神经网络、深度学习方向书籍资料

    • A Note on BPTT for LSTM LM.pdf
    • cnn-lstm-ctc.pdf
    • CNN与反向传播.pdf
    • ctc.pdf
    • Deep learning(1).pdf
    • Deep Learning-Bengio .pdf
    • deep learning.pdf
    • deep-learning-nature2015.pdf
    • deeplearning.pdf
    • deeplearningbook-chinese-master.zip
    • DeepLearningBook.pdf
    • DeepLearning_MethodsandApplications-MR-Chinese.pdf
    • deep_rl_tutorial.pdf
    • Hinton.SOM.pdf
    • Introduction to Deep Learning.pdf
    • Neural Network and Deep Learning.pdf
    • Supervised Sequence Labelling with Recurrent Neural Networks.pdf
    • tr.pdf
    • Unsupervised Learning of Edges_Yin Li_2016.pdf
    • Week1d Introduction to CNNs (AlexNet).pdf
    • 《神经网络与深度学习》邱锡鹏
    • 《神经网络与深度学习综述DeepLearning15May2014.pdf
    • 人工智能深度学习deeplearning_for_AI_course(2015_Spring)_927202100.pdf
    • 刘昕 - 深度学习基础与实战_2017新版.pdf
    • 可视化理解卷积网络Visualizing and Understanding Convolutional Networks.pdf
    • 吴恩达深度学习基础教程.pdf
    • 基于CNN的图片颜色处理.pdf
    • 基于卷积神经网络的深度学习算法与应用研究.pdf
    • 大数据,机器(深度)学习精品名师学习课程.pdf
    • 深度学习.rar
    • 深度学习word2vec学习笔记.pdf
    • 深度学习基础及数学原理.pdf
    • 深度学习基础教程.pdf
    • 深度学习的基本理论与方法.pptx
    • 电子书_深度学习方法及应用.pdf
    • 神经网络和深度学习.pdf
    • 神经网络与机器学习(原书第3版).pdf
    • 神经网络与深度学习讲义20151211.pdf
    • 神经网络原理.pdf
    下载地址
    游客,如果您要查看本帖隐藏内容请回复


    〖下载地址失效反馈〗:

    下载地址如果失效,请反馈。反馈地址: https://www.fstcode.com/thread-5527-1-1.html

    〖赞助VIP免灵石下载全站资源〗:

    全站资源高清无密,每天更新,VIP特权: https://www.fstcode.com/plugin.php?id=threed_vip

    〖客服24小时咨询〗:

    有任何问题,请点击右侧客服QQ咨询。

    回复

    使用道具 举报

  • TA的每日心情
    开心
    2020-11-17 10:39
  • 签到天数: 4 天

    [LV.2]偶尔看看I

    0

    主题

    101

    帖子

    325

    积分

    筑基程序员

    Rank: 3Rank: 3

    积分
    325
    发表于 2023-3-24 02:52:31 | 显示全部楼层
    嘘,低调。
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

     
    在线客服
    点击这里给我发消息 点击这里给我发消息
    用心服务所有程序员,做最好的编程视频网站
    QQ:354410543
    周一至周日 00:00-24:00
    联系站长:admin@fstcode.com

    QQ群(仅限付费用户)

    Powered by "真全栈程序员" © 2010-2023 "真全栈程序员" 本站资源全部来自互联网及网友分享-如有侵权请发邮件到站长邮箱联系删除!