斯坦福大学吴恩达Andrew Ng机器学习教程

1
回复
1051
查看
[复制链接]
  • TA的每日心情
    擦汗
    2023-5-6 02:41
  • 签到天数: 570 天

    [LV.9]以坛为家II

    2853

    主题

    3456

    帖子

    1万

    积分

    管理员

    Rank: 9Rank: 9Rank: 9

    积分
    17981
    发表于 2018-2-20 15:00:00 | 显示全部楼层 |阅读模式

    登录后查看本帖详细内容!

    您需要 登录 才可以下载或查看,没有帐号?立即注册

    x

    课程概述


    机器学习是一门让计算机在非精确编程下進行活动的科学。在过去十年,机器学习促成了无人驾驶车、高效语音识别、精确网络搜索及人类基因组认知的大力发展。机器学习如此无孔不入,你可能已经在不知情的情况下利用过无数次。许多研究者认为,这种手段是达到人类水平AI的最佳方式。这门课程中,你将学习到高效的机器学习技巧,及学会如何利用它为你服务。重点是,你不仅能学到理论基础,更能知晓如何快速有效应用这些技巧到新的问题上。最后,你会接触到硅谷创新中几个优秀的涉及机器学习与AI的应用实例。


    此课程将广泛介绍机器学习、数据挖掘与统计模式识别的知识。


    主题包括:


    (i) 监督学习(参数/非参数算法、支持向量机、内核、神经网络)。

    (ii) 非监督学习(聚类、降维、推荐系统、深度学习)。

    (iii) 机器学习的优秀案例(偏差/方差理论;机器学习和人工智能的创新过程)课程将拮取案例研究与应用,学习如何将学习算法应用到智能机器人(观感,控制)、文字理解(网页搜索,防垃圾邮件)、计算机视觉、医学信息学、音频、数据挖掘及其他领域上。


    【课程内容】


    1 - 1 - Welcome (7 min)
    1 - 2 - What is Machine Learning- (7 min)
    1 - 3 - Supervised Learning (12 min)
    1 - 4 - Unsupervised Learning (14 min)
    2 - 1 - Model Representation (8 min)
    2 - 2 - Cost Function (8 min)
    2 - 3 - Cost Function - Intuition I (11 min)
    2 - 4 - Cost Function - Intuition II (9 min)
    2 - 5 - Gradient Descent (11 min)
    2 - 6 - Gradient Descent Intuition (12 min)
    2 - 7 - Gradient Descent For Linear Regression (10 min)
    2 - 8 - What-'s Next (6 min)
    3 - 1 - Matrices and Vectors (9 min)
    3 - 2 - Addition and Scalar Multiplication (7 min)
    3 - 3 - Matrix Vector Multiplication (14 min)
    3 - 4 - Matrix Matrix Multiplication (11 min)
    3 - 5 - Matrix Multiplication Properties (9 min)
    3 - 6 - Inverse and Transpose (11 min)
    4 - 1 - Multiple Features (8 min)
    4 - 2 - Gradient Descent for Multiple Variables (5 min)
    4 - 3 - Gradient Descent in Practice I - Feature Scaling (9 min)
    4 - 4 - Gradient Descent in Practice II - Learning Rate (9 min)
    4 - 5 - Features and Polynomial Regression (8 min)
    4 - 6 - Normal Equation (16 min)
    4 - 7 - Normal Equation Noninvertibility (Optional) (6 min)
    5 - 1 - Basic Operations (14 min)
    5 - 2 - Moving Data Around (16 min)
    5 - 3 - Computing on Data (13 min)
    5 - 4 - Plotting Data (10 min)
    5 - 5 - Control Statements- for, while, if statements (13 min)
    5 - 6 - Vectorization (14 min)
    5 - 7 - Working on and Submitting Programming Exercises (4 min)
    6 - 1 - Classification (8 min)
    6 - 2 - Hypothesis Representation (7 min)
    6 - 3 - Decision Boundary (15 min)
    6 - 4 - Cost Function (11 min)
    6 - 5 - Simplified Cost Function and Gradient Descent (10 min)
    6 - 6 - Advanced Optimization (14 min)
    6 - 7 - Multiclass Classification- One-vs-all (6 min)
    7 - 1 - The Problem of Overfitting (10 min)
    7 - 2 - Cost Function (10 min)
    7 - 3 - Regularized Linear Regression (11 min)
    7 - 4 - Regularized Logistic Regression (9 min)
    8 - 1 - Non-linear Hypotheses (10 min)
    8 - 2 - Neurons and the Brain (8 min)
    8 - 3 - Model Representation I (12 min)
    8 - 4 - Model Representation II (12 min)
    8 - 5 - Examples and Intuitions I (7 min)
    8 - 6 - Examples and Intuitions II (10 min)
    8 - 7 - Multiclass Classification (4 min)
    9 - 1 - Cost Function (7 min)
    9 - 2 - Backpropagation Algorithm (12 min)
    9 - 3 - Backpropagation Intuition (13 min)
    9 - 4 - Implementation Note- Unrolling Parameters (8 min)
    9 - 5 - Gradient Checking (12 min)
    9 - 6 - Random Initialization (7 min)
    9 - 7 - Putting It Together (14 min)
    9 - 8 - Autonomous Driving (7 min)
    10 - 1 - Deciding What to Try Next (6 min)
    10 - 2 - Evaluating a Hypothesis (8 min)
    10 - 3 - Model Selection and Train-Validation-Test Sets (12 min)
    10 - 4 - Diagnosing Bias vs. Variance (8 min)
    10 - 5 - Regularization and Bias-Variance (11 min)
    10 - 6 - Learning Curves (12 min)
    10 - 7 - Deciding What to Do Next Revisited (7 min)
    11 - 1 - Prioritizing What to Work On (10 min)
    11 - 2 - Error Analysis (13 min)
    11 - 3 - Error Metrics for Skewed Classes (12 min)
    11 - 4 - Trading Off Precision and Recall (14 min)
    11 - 5 - Data For Machine Learning (11 min)
    12 - 1 - Optimization Objective (15 min)
    12 - 2 - Large Margin Intuition (11 min)
    12 - 3 - Mathematics Behind Large Margin Classification (Optional) (20 min)
    12 - 4 - Kernels I (16 min)
    12 - 5 - Kernels II (16 min)
    12 - 6 - Using An SVM (21 min)
    13 - 1 - Unsupervised Learning- Introduction (3 min)
    13 - 2 - K-Means Algorithm (13 min)
    13 - 3 - Optimization Objective (7 min)
    13 - 4 - Random Initialization (8 min)
    13 - 5 - Choosing the Number of Clusters (8 min)
    14 - 1 - Motivation I- Data Compression (10 min)
    14 - 2 - Motivation II- Visualization (6 min)
    14 - 3 - Principal Component Analysis Problem Formulation (9 min)
    14 - 4 - Principal Component Analysis Algorithm (15 min)
    14 - 5 - Choosing the Number of Principal Components (11 min)
    14 - 6 - Reconstruction from Compressed Representation (4 min)
    14 - 7 - Advice for Applying PCA (13 min)
    15 - 1 - Problem Motivation (8 min)
    15 - 2 - Gaussian Distribution (10 min)
    15 - 3 - Algorithm (12 min)
    15 - 4 - Developing and Evaluating an Anomaly Detection System (13 min)
    15 - 5 - Anomaly Detection vs. Supervised Learning (8 min)
    15 - 6 - Choosing What Features to Use (12 min)
    15 - 7 - Multivariate Gaussian Distribution (Optional) (14 min)
    15 - 8 - Anomaly Detection using the Multivariate Gaussian Distribution (Optional) (14 min)
    16 - 1 - Problem Formulation (8 min)
    16 - 2 - Content Based Recommendations (15 min)
    16 - 3 - Collaborative Filtering (10 min)
    16 - 4 - Collaborative Filtering Algorithm (9 min)
    16 - 5 - Vectorization- Low Rank Matrix Factorization (8 min)
    16 - 6 - Implementational Detail- Mean Normalization (9 min)
    17 - 1 - Learning With Large Datasets (6 min)
    17 - 2 - Stochastic Gradient Descent (13 min)
    17 - 3 - Mini-Batch Gradient Descent (6 min)
    17 - 4 - Stochastic Gradient Descent Convergence (12 min)
    17 - 5 - Online Learning (13 min)
    17 - 6 - Map Reduce and Data Parallelism (14 min)
    18 - 1 - Problem Description and Pipeline (7 min)
    18 - 2 - Sliding Windows (15 min)
    18 - 3 - Getting Lots of Data and Artificial Data (16 min)
    18 - 4 - Ceiling Analysis- What Part of the Pipeline to Work on Next (14 min)
    19 - 1 - Summary and Thank You (5 min)
    下载地址
    游客,如果您要查看本帖隐藏内容请回复



    〖下载地址失效反馈〗:

    下载地址如果失效,请反馈。反馈地址: https://www.fstcode.com/thread-5527-1-1.html

    〖赞助VIP免灵石下载全站资源〗:

    全站资源高清无密,每天更新,VIP特权: https://www.fstcode.com/plugin.php?id=threed_vip

    〖客服24小时咨询〗:

    有任何问题,请点击右侧客服QQ咨询。

    回复

    使用道具 举报

  • TA的每日心情
    奋斗
    2024-7-1 08:52
  • 签到天数: 46 天

    [LV.5]常住居民I

    0

    主题

    114

    帖子

    548

    积分

    终身VIP

    Rank: 12Rank: 12Rank: 12

    积分
    548
    发表于 2020-1-7 18:07:52 | 显示全部楼层
    学一学
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

     
    在线客服
    点击这里给我发消息 点击这里给我发消息
    用心服务所有程序员,做最好的编程视频网站
    QQ:354410543
    周一至周日 00:00-24:00
    联系站长:admin@fstcode.com

    QQ群(仅限付费用户)

    Powered by "真全栈程序员" © 2010-2023 "真全栈程序员" 本站资源全部来自互联网及网友分享-如有侵权请发邮件到站长邮箱联系删除!