斯坦福大学 机器学习 吴恩达

5
回复
1243
查看
[复制链接]
  • TA的每日心情
    擦汗
    2023-5-6 02:41
  • 签到天数: 570 天

    [LV.9]以坛为家II

    2936

    主题

    3539

    帖子

    1万

    积分

    管理员

    Rank: 9Rank: 9Rank: 9

    积分
    18422
    发表于 2019-1-12 12:11:00 | 显示全部楼层 |阅读模式

    登录后查看本帖详细内容!

    您需要 登录 才可以下载或查看,没有帐号?立即注册

    x
    ├─pdf
    │      Lecture1.pdf
    │      Lecture10.pdf
    │      Lecture11.pdf
    │      Lecture12.pdf
    │      Lecture13.pdf
    │      Lecture14.pdf
    │      Lecture15.pdf
    │      Lecture16.pdf
    │      Lecture17.pdf
    │      Lecture18.pdf
    │      Lecture2.pdf
    │      Lecture3.pdf
    │      Lecture4.pdf
    │      Lecture5.pdf
    │      Lecture6.pdf
    │      Lecture7.pdf
    │      Lecture8.pdf
    │      Lecture9.pdf
    │      
    ├─ppt
    │      Lecture1.pptx
    │      Lecture10.pptx
    │      Lecture11.pptx
    │      Lecture12.pptx
    │      Lecture13.pptx
    │      Lecture14.pptx
    │      Lecture15.pptx
    │      Lecture16.pptx
    │      Lecture17.pptx
    │      Lecture18.pptx
    │      Lecture2.pptx
    │      Lecture3.pptx
    │      Lecture4.pptx
    │      Lecture5.pptx
    │      Lecture6.pptx
    │      Lecture7.pptx
    │      Lecture8.pptx
    │      Lecture9.pptx
    │  └─整合pdf
    │          ex1.pdf
    │          ex2.pdf
    │          ex3.pdf
    │          ex4.pdf
    │          ex5.pdf
    │          ex6.pdf
    │          ex7.pdf
    │          ex8.pdf
    │          Programming Exercise(机器学习2014练习).pdf
    │          源代码打印.pdf
    │          源代码目录.docx
    │         
    └─视频
            1 - 1 - Welcome (7 min).mkv
            1 - 1 - Welcome (7 min).srt
            1 - 2 - What is Machine Learning_ (7 min).mkv
            1 - 2 - What is Machine Learning_ (7 min).srt
            1 - 3 - Supervised Learning (12 min).mkv
            1 - 3 - Supervised Learning (12 min).srt
            1 - 4 - Unsupervised Learning (14 min).mkv
            1 - 4 - Unsupervised Learning (14 min).srt
            2 - 1 - Model Representation (8 min).mkv
            2 - 1 - Model Representation (8 min).srt
            2 - 2 - Cost Function (8 min).mkv
            2 - 2 - Cost Function (8 min).srt
            2 - 3 - Cost Function - Intuition I (11 min).mkv
            2 - 3 - Cost Function - Intuition I (11 min).srt
            2 - 4 - Cost Function - Intuition II (9 min).mkv
            2 - 4 - Cost Function - Intuition II (9 min).srt
            2 - 5 - Gradient Descent (11 min).mkv
            2 - 5 - Gradient Descent (11 min).srt
            2 - 6 - Gradient Descent Intuition (12 min).mkv
            2 - 6 - Gradient Descent Intuition (12 min).srt
            2 - 7 - Gradient Descent For Linear Regression (10 min).srt
            2 - 7 - GradientDescentForLinearRegression  (6 min).mkv
            2 - 8 - What_'s Next (6 min).mkv
            2 - 8 - What_'s Next (6 min).srt
            3 - 1 - Matrices and Vectors (9 min).mkv
            3 - 1 - Matrices and Vectors (9 min).srt
            3 - 2 - Addition and Scalar Multiplication (7 min).mkv
            3 - 2 - Addition and Scalar Multiplication (7 min).srt
            3 - 3 - Matrix Vector Multiplication (14 min).mkv
            3 - 3 - Matrix Vector Multiplication (14 min).srt
            3 - 4 - Matrix Matrix Multiplication (11 min).mkv
            3 - 4 - Matrix Matrix Multiplication (11 min).srt
            3 - 5 - Matrix Multiplication Properties (9 min).mkv
            3 - 5 - Matrix Multiplication Properties (9 min).srt
            3 - 6 - Inverse and Transpose (11 min).mkv
            3 - 6 - Inverse and Transpose (11 min).srt
            4 - 1 - Multiple Features (8 min).mkv
            4 - 1 - Multiple Features (8 min).srt
            4 - 2 - Gradient Descent for Multiple Variables (5 min).mkv
            4 - 2 - Gradient Descent for Multiple Variables (5 min).srt
            4 - 3 - Gradient Descent in Practice I - Feature Scaling (9 min).mkv
            4 - 3 - Gradient Descent in Practice I - Feature Scaling (9 min).srt
            4 - 4 - Gradient Descent in Practice II - Learning Rate (9 min).mkv
            4 - 4 - Gradient Descent in Practice II - Learning Rate (9 min).srt
            4 - 5 - Features and Polynomial Regression (8 min).mkv
            4 - 5 - Features and Polynomial Regression (8 min).srt
            4 - 6 - Normal Equation (16 min).mkv
            4 - 6 - Normal Equation (16 min).srt
            4 - 7 - Normal Equation Noninvertibility (Optional) (6 min).mkv
            4 - 7 - Normal Equation Noninvertibility (Optional) (6 min).srt
            5 - 1 - Basic Operations (14 min).mkv
            5 - 1 - Basic Operations (14 min).srt
            5 - 2 - Moving Data Around (16 min).mkv
            5 - 2 - Moving Data Around (16 min).srt
            5 - 3 - Computing on Data (13 min).mkv
            5 - 3 - Computing on Data (13 min).srt
            5 - 4 - Plotting Data (10 min).mkv
            5 - 4 - Plotting Data (10 min).srt
            5 - 5 - Control Statements_ for, while, if statements (13 min).mkv
            5 - 5 - Control Statements_ for, while, if statements (13 min).srt
            5 - 6 - Vectorization (14 min).mkv
            5 - 6 - Vectorization (14 min).srt
            5 - 7 - Working on and Submitting Programming Exercises (4 min).mkv
            5 - 7 - Working on and Submitting Programming Exercises (4 min).srt
            6 - 1 - Classification (8 min).mkv
            6 - 1 - Classification (8 min).srt
            6 - 2 - Hypothesis Representation (7 min).mkv
            6 - 2 - Hypothesis Representation (7 min).srt
            6 - 3 - Decision Boundary (15 min).mkv
            6 - 3 - Decision Boundary (15 min).srt
            6 - 4 - Cost Function (11 min).mkv
            6 - 4 - Cost Function (11 min).srt
            6 - 5 - Simplified Cost Function and Gradient Descent (10 min).mkv
            6 - 5 - Simplified Cost Function and Gradient Descent (10 min).srt
            6 - 6 - Advanced Optimization (14 min).mkv
            6 - 6 - Advanced Optimization (14 min).srt
            6 - 7 - Multiclass Classification_ One-vs-all (6 min).mkv
            6 - 7 - Multiclass Classification_ One-vs-all (6 min).srt
            7 - 1 - The Problem of Overfitting (10 min).mkv
            7 - 1 - The Problem of Overfitting (10 min).srt
            7 - 2 - Cost Function (10 min).mkv
            7 - 2 - Cost Function (10 min).srt
            7 - 3 - Regularized Linear Regression (11 min).mkv
            7 - 3 - Regularized Linear Regression (11 min).srt
            7 - 4 - Regularized Logistic Regression (9 min).mkv
            7 - 4 - Regularized Logistic Regression (9 min).srt
            8 - 1 - Non-linear Hypotheses (10 min).mkv
            8 - 1 - Non-linear Hypotheses (10 min).srt
            8 - 2 - Neurons and the Brain (8 min).mkv
            8 - 2 - Neurons and the Brain (8 min).srt
            8 - 3 - Model Representation I (12 min).mkv
            8 - 3 - Model Representation I (12 min).srt
            8 - 4 - Model Representation II (12 min).mkv
            8 - 4 - Model Representation II (12 min).srt
            8 - 5 - Examples and Intuitions I (7 min).mkv
            8 - 5 - Examples and Intuitions I (7 min).srt
            8 - 6 - Examples and Intuitions II (10 min).mkv
            8 - 6 - Examples and Intuitions II (10 min).srt
            8 - 7 - Multiclass Classification (4 min).mkv
            8 - 7 - Multiclass Classification (4 min).srt
            9 - 1 - Cost Function (7 min).mkv
            9 - 1 - Cost Function (7 min).srt
            9 - 2 - Backpropagation Algorithm (12 min).mkv
            9 - 2 - Backpropagation Algorithm (12 min).srt
            9 - 3 - Backpropagation Intuition (13 min).mkv
            9 - 3 - Backpropagation Intuition (13 min).srt
            9 - 4 - Implementation Note_ Unrolling Parameters (8 min).mkv
            9 - 4 - Implementation Note_ Unrolling Parameters (8 min).srt
            9 - 5 - Gradient Checking (12 min).mkv
            9 - 5 - Gradient Checking (12 min).srt
            9 - 6 - Random Initialization (7 min).mkv
            9 - 6 - Random Initialization (7 min).srt
            9 - 7 - Putting It Together (14 min).mkv
            9 - 7 - Putting It Together (14 min).srt
            9 - 8 - Autonomous Driving (7 min).mkv
            9 - 8 - Autonomous Driving (7 min).srt
            10 - 1 - Deciding What to Try Next (6 min).mkv
            10 - 1 - Deciding What to Try Next (6 min).srt
            10 - 2 - Evaluating a Hypothesis (8 min).mkv
            10 - 2 - Evaluating a Hypothesis (8 min).srt
            10 - 3 - Model Selection and Train_Validation_Test Sets (12 min).mkv
            10 - 3 - Model Selection and Train_Validation_Test Sets (12 min).srt
            10 - 4 - Diagnosing Bias vs. Variance (8 min).mkv
            10 - 4 - Diagnosing Bias vs. Variance (8 min).srt
            10 - 5 - Regularization and Bias_Variance (11 min).mkv
            10 - 5 - Regularization and Bias_Variance (11 min).srt
            10 - 6 - Learning Curves (12 min).mkv
            10 - 6 - Learning Curves (12 min).srt
            10 - 7 - Deciding What to Do Next Revisited (7 min).mkv
            10 - 7 - Deciding What to Do Next Revisited (7 min).srt
            11 - 1 - Prioritizing What to Work On (10 min).mkv
            11 - 1 - Prioritizing What to Work On (10 min).srt
            11 - 2 - Error Analysis (13 min).mkv
            11 - 2 - Error Analysis (13 min).srt
            11 - 3 - Error Metrics for Skewed Classes (12 min).mkv
            11 - 3 - Error Metrics for Skewed Classes (12 min).srt
            11 - 4 - Trading Off Precision and Recall (14 min).mkv
            11 - 4 - Trading Off Precision and Recall (14 min).srt
            11 - 5 - Data For Machine Learning (11 min).mkv
            11 - 5 - Data For Machine Learning (11 min).srt
            12 - 1 - Optimization Objective (15 min).mkv
            12 - 1 - Optimization Objective (15 min).srt
            12 - 2 - Large Margin Intuition (11 min).mkv
            12 - 2 - Large Margin Intuition (11 min).srt
            12 - 3 - Mathematics Behind Large Margin Classification (Optional) (20 min).mkv
            12 - 3 - Mathematics Behind Large Margin Classification (Optional) (20 min).srt
            12 - 4 - Kernels I (16 min).mkv
            12 - 4 - Kernels I (16 min).srt
            12 - 5 - Kernels II (16 min).mkv
            12 - 5 - Kernels II (16 min).srt
            12 - 6 - Using An SVM (21 min).mkv
            12 - 6 - Using An SVM (21 min).srt
            13 - 1 - Unsupervised Learning_ Introduction (3 min).mkv
            13 - 1 - Unsupervised Learning_ Introduction (3 min).srt
            13 - 2 - K-Means Algorithm (13 min).mkv
            13 - 2 - K-Means Algorithm (13 min).srt
            13 - 3 - Optimization Objective (7 min)(1).mkv
            13 - 3 - Optimization Objective (7 min)(1).srt
            13 - 3 - Optimization Objective (7 min).mkv
            13 - 3 - Optimization Objective (7 min).srt
            13 - 4 - Random Initialization (8 min).mkv
            13 - 4 - Random Initialization (8 min).srt
            13 - 5 - Choosing the Number of Clusters (8 min).mkv
            13 - 5 - Choosing the Number of Clusters (8 min).srt
            14 - 1 - Motivation I_ Data Compression (10 min).mkv
            14 - 1 - Motivation I_ Data Compression (10 min).srt
            14 - 2 - Motivation II_ Visualization (6 min).mkv
            14 - 2 - Motivation II_ Visualization (6 min).srt
            14 - 3 - Principal Component Analysis Problem Formulation (9 min).mkv
            14 - 3 - Principal Component Analysis Problem Formulation (9 min).srt
            14 - 4 - Principal Component Analysis Algorithm (15 min).mkv
            14 - 4 - Principal Component Analysis Algorithm (15 min).srt
            14 - 5 - Choosing the Number of Principal Components (11 min).mkv
            14 - 5 - Choosing the Number of Principal Components (11 min).srt
            14 - 6 - Reconstruction from Compressed Representation (4 min).mkv
            14 - 6 - Reconstruction from Compressed Representation (4 min).srt
            14 - 7 - Advice for Applying PCA (13 min).mkv
            14 - 7 - Advice for Applying PCA (13 min).srt
            15 - 1 - Problem Motivation (8 min).mkv
            15 - 1 - Problem Motivation (8 min).srt
            15 - 2 - Gaussian Distribution (10 min).mkv
            15 - 2 - Gaussian Distribution (10 min).srt
            15 - 3 - Algorithm (12 min).mkv
            15 - 3 - Algorithm (12 min).srt
            15 - 4 - Developing and Evaluating an Anomaly Detection System (13 min).mkv
            15 - 4 - Developing and Evaluating an Anomaly Detection System (13 min).srt
            15 - 5 - Anomaly Detection vs. Supervised Learning (8 min).mkv
            15 - 5 - Anomaly Detection vs. Supervised Learning (8 min).srt
            15 - 6 - Choosing What Features to Use (12 min).mkv
            15 - 6 - Choosing What Features to Use (12 min).srt
            15 - 7 - Multivariate Gaussian Distribution (Optional) (14 min).mkv
            15 - 7 - Multivariate Gaussian Distribution (Optional) (14 min).srt
            15 - 8 - Anomaly Detection using the Multivariate Gaussian Distribution (Optional) (14 min).mkv
            15 - 8 - Anomaly Detection using the Multivariate Gaussian Distribution (Optional) (14 min).srt
            16 - 1 - Problem Formulation (8 min).mkv
            16 - 1 - Problem Formulation (8 min).srt
            16 - 2 - Content Based Recommendations (15 min).mkv
            16 - 2 - Content Based Recommendations (15 min).srt
            16 - 3 - Collaborative Filtering (10 min).mkv
            16 - 3 - Collaborative Filtering (10 min).srt
            16 - 4 - Collaborative Filtering Algorithm (9 min).mkv
            16 - 4 - Collaborative Filtering Algorithm (9 min).srt
            16 - 5 - Vectorization_ Low Rank Matrix Factorization (8 min).mkv
            16 - 5 - Vectorization_ Low Rank Matrix Factorization (8 min).srt
            16 - 6 - Implementational Detail_ Mean Normalization (9 min).mkv
            16 - 6 - Implementational Detail_ Mean Normalization (9 min).srt
            17 - 1 - Learning With Large Datasets (6 min).mkv
            17 - 1 - Learning With Large Datasets (6 min).srt
            17 - 2 - Stochastic Gradient Descent (13 min).mkv
            17 - 2 - Stochastic Gradient Descent (13 min).srt
            17 - 3 - Mini-Batch Gradient Descent (6 min).mkv
            17 - 3 - Mini-Batch Gradient Descent (6 min).srt
            17 - 4 - Stochastic Gradient Descent Convergence (12 min).mkv
            17 - 4 - Stochastic Gradient Descent Convergence (12 min).srt
            17 - 5 - Online Learning (13 min).mkv
            17 - 5 - Online Learning (13 min).srt
            17 - 6 - Map Reduce and Data Parallelism (14 min).mkv
            17 - 6 - Map Reduce and Data Parallelism (14 min).srt
            18 - 1 - Problem Description and Pipeline (7 min).mkv
            18 - 1 - Problem Description and Pipeline (7 min).srt
            18 - 2 - Sliding Windows (15 min).mkv
            18 - 2 - Sliding Windows (15 min).srt
            18 - 3 - Getting Lots of Data and Artificial Data (16 min).mkv
            18 - 3 - Getting Lots of Data and Artificial Data (16 min).srt
            18 - 4 - Ceiling Analysis_ What Part of the Pipeline to Work on Next (14 min).mkv
            18 - 4 - Ceiling Analysis_ What Part of the Pipeline to Work on Next (14 min).srt
            19 - 1 - Summary and Thank You (5 min).mkv
            19 - 1 - Summary and Thank You (5 min).srt

    下载地址
    游客,如果您要查看本帖隐藏内容请回复



    〖下载地址失效反馈〗:

    下载地址如果失效,请反馈。反馈地址: https://www.fstcode.com/thread-5527-1-1.html

    〖赞助VIP免灵石下载全站资源〗:

    全站资源高清无密,每天更新,VIP特权: https://www.fstcode.com/plugin.php?id=threed_vip

    〖客服24小时咨询〗:

    有任何问题,请点击右侧客服QQ咨询。

    回复

    使用道具 举报

  • TA的每日心情
    开心
    2022-10-15 17:40
  • 签到天数: 25 天

    [LV.4]偶尔看看III

    0

    主题

    50

    帖子

    282

    积分

    终身VIP

    Rank: 12Rank: 12Rank: 12

    积分
    282
    发表于 2019-12-29 09:00:15 | 显示全部楼层
    xuexixuexi
    回复

    使用道具 举报

  • TA的每日心情
    奋斗
    2024-7-1 08:52
  • 签到天数: 46 天

    [LV.5]常住居民I

    0

    主题

    114

    帖子

    548

    积分

    终身VIP

    Rank: 12Rank: 12Rank: 12

    积分
    548
    发表于 2020-1-7 18:51:10 | 显示全部楼层
    学习一下,谢谢
    回复

    使用道具 举报

  • TA的每日心情
    开心
    2020-4-5 15:25
  • 签到天数: 1 天

    [LV.1]初来乍到

    0

    主题

    3

    帖子

    13

    积分

    凡人程序员

    Rank: 1

    积分
    13
    发表于 2020-4-5 15:27:57 | 显示全部楼层
    厉害!!!!学一下
    回复

    使用道具 举报

  • TA的每日心情
    擦汗
    2020-1-22 13:50
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    0

    主题

    112

    帖子

    414

    积分

    终身VIP

    Rank: 12Rank: 12Rank: 12

    积分
    414
    发表于 2023-3-24 12:16:04 | 显示全部楼层
    广告位,,坐下看看
    回复

    使用道具 举报

  • TA的每日心情
    慵懒
    2021-12-5 17:39
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    4

    主题

    111

    帖子

    395

    积分

    终身VIP

    Rank: 12Rank: 12Rank: 12

    积分
    395
    发表于 2023-3-24 19:42:47 | 显示全部楼层
    看起来不错
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

     
    在线客服
    点击这里给我发消息 点击这里给我发消息
    用心服务所有程序员,做最好的编程视频网站
    QQ:354410543
    周一至周日 00:00-24:00
    联系站长:admin@fstcode.com

    QQ群(仅限付费用户)

    Powered by "真全栈程序员" © 2010-2023 "真全栈程序员" 本站资源全部来自互联网及网友分享-如有侵权请发邮件到站长邮箱联系删除!